Comparative analysis of type III effector translocation by Yersinia pseudotuberculosis expressing native LcrV or PcrV from Pseudomonas aeruginosa.
نویسندگان
چکیده
The homologues LcrV of Yersinia species and PcrV of Pseudomonas aeruginosa are pore-forming components. When expressed in a Yersinia lcrV background, PcrV formed smaller pores in infected erythrocyte membranes, correlating to a lowered translocation of Yersinia effectors. To understand this phenomenon, cytotoxins exoenzyme S of P. aeruginosa and YopE of Yersinia were introduced into a Yersinia background without Yop effectors but expressing LcrV or PcrV. Comparable translocation of each substrate indicated that substrate recognition by LcrV/PcrV is not a regulator of translocation. Yersinia harboring pcrV coexpressed with its native operon efficiently translocated effectors into HeLa cell monolayers and formed large LcrV-like pores in erythrocyte membranes. Thus, a PcrV complex with native P. aeruginosa translocon components is required to form fully functional pores for complete complementation of effector translocation in Yersinia.
منابع مشابه
Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa
The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and P...
متن کاملMulti-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria
Pseudomonas aeruginosa possesses a type III secretion system (T3SS) to intoxicate host cells and evade innate immunity. This virulence-related machinery consists of a molecular syringe and needle assembled on the bacterial surface, which allows delivery of T3 effector proteins into infected cells. To accomplish a one-step effector translocation, a tip protein is required at the top end of the T...
متن کاملYersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice.
The virulence-associated V Ag (LcrV) of pathogenic Yersinia species is part of the translocation apparatus, required to deliver antihost effector proteins (Yersinia outer proteins) into host cells. An orthologous protein (denoted as PcrV) has also been identified in the ExoS regulon of Pseudomonas aeruginosa. Additionally, it is known that LcrV is released by yersiniae into the environment and ...
متن کاملLimiting too much of a good thing: a negative feedback mechanism prevents unregulated translocation of type III effector proteins.
Type III secretion systems (T3SS) are highly specialized structures termed injectisomes which function by translocating bacterial effector proteins via hollow needles directly into eukaryotic target cells. The translocated effectors alter target cell physiology to promote the pathogenic and symbiotic lifestyles of many gram-negative bacterial species. Orchestrating T3SS activity requires multip...
متن کاملGrowth of Yersinia pseudotuberculosis in mice occurs independently of Toll-like receptor 2 expression and induction of interleukin-10.
Pathogenic Yersinia translocates effector proteins into target cells via a type III secretion system (TTSS), modulating the host immune response. A component of the TTSS translocon, LcrV, has been implicated in preventing inflammation through Toll-like receptor 2 (TLR2) by inducing expression of the anti-inflammatory cytokine interleukin-10 (IL-10). TLR2(-/-) mice were reported to be less susce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of infectious diseases
دوره 188 2 شماره
صفحات -
تاریخ انتشار 2003